Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

A two-dimensional Co^{II} coordination polymer with the ligand 1,1'-bis[(1*H*-1,2,4-triazol-1-yl)methyl]ferrocene

Xiao-Li Zhou,‡ Xiang-Ru Meng and Hong-Wei Hou*

Department of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China

Correspondence e-mail: houhongw@zzu.edu.cn

Received 2 April 2007; accepted 17 May 2007

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.009 Å; R factor = 0.057; wR factor = 0.190; data-to-parameter ratio = 15.3.

In the title polymer, poly[[aquabis{ μ_2 -1,1'-bis[(1H-1,2,4-triazol-1-yl)methyl]ferrocene- $\kappa^2 N^4$: N^4 '}ethanolcobalt(II)] bis(perchlorate) ethanol trisolvate], {[CoFe₂(C₈H₈N₃)₄(C₂H₆-O)(H₂O)](ClO₄)₂·3C₆H₆O}_n or {[Co(btmf)₂(EtOH)(H₂O)]-(ClO₄)₂·3EtOH}_n, where btmf is the ferrocene-containing ligand, the Co^{II} ion is six-coordinated by four N atoms from btmf ligands, one O atom from a water molecule and one O atom from an ethanol molecule. The btmf ligands connect the Co^{II} ions to form layers and these layers are organized by hydrogen bonds, expanding the crystal structure to a three-dimensional supramolecular network.

Related literature

For related literature, see: Chen *et al.* (2005); Gao *et al.* (2004, 2006); Dong *et al.* (2003); Han *et al.* (2005); Jia *et al.* (2007); Li *et al.* (2003); Wilkes *et al.* (1995).

Experimental

Crystal data

 $\begin{array}{ll} \mbox{[CoFe}_2(C_8H_8N_3)_4(C_2H_6O)(H_2O)]- & \mbox{Monoclinic, P_1/n} \\ \mbox{(CIO}_4)_2\cdot 3C_6H_6O[& a=17.3708 (11) \mbox{ Å} \\ \mbox{M_r=1156.51$} & b=14.2250 (9) \mbox{ Å} \end{array}$

‡ Alternative address: Department of Chemical Engineering and Food Science, Zhongzhou University, Zhengzhou 450015, People's Republic of China.

c = 21.2747 (14) Å $\beta = 94.224 (1)^{\circ}$ $V = 5242.7 (6) \text{ Å}^{3}$ Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2004) T_{min} = 0.817, T_{max} = 0.919

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.190$ S = 1.029696 reflections 635 parameters Mo K α radiation $\mu = 1.03 \text{ mm}^{-1}$ T = 291 (2) K $0.20 \times 0.15 \times 0.08 \text{ mm}$

27120 measured reflections 9696 independent reflections 6313 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.037$

720 restraints H-atom parameters constrained $\Delta \rho_{max} = 0.61$ e Å⁻³ $\Delta \rho_{min} = -0.53$ e Å⁻³

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1 - H1D \cdots O2$	0.93	1.74	2.665 (6)	174
$O2-H2D\cdots Cl2^{i}$	0.82	2.87	3.620 (6)	153
$O3 - H3D \cdots O8$	0.85	2.08	2.906 (12)	162
$O3 - H3D \cdots Cl1$	0.85	2.90	3.687 (8)	153
$O4-H4D\cdots N5^{ii}$	0.84	2.05	2.871 (8)	164
$O13 - H1W \cdots O3$	0.85	1.92	2.677 (7)	148
$O13-H2W\cdots O4$	0.90	2.06	2.622 (7)	119

Symmetry codes: (i) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) $x - \frac{1}{2}$, $-y + \frac{1}{2}$, $z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2004); software used to prepare material for publication: *SHELXTL*.

The authors thank the National Natural Science Foundation of China (grant Nos. 20001006 and 20371042) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2097).

References

Bruker (2004). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, H.-M., Shi-Ping, Y., Chen, Q.-Q., Zhang, F., Jia-Min, C. & Yu, X.-B. (2005). Acta Cryst. E61, m1001–m1003.

Dong, G., Yu-ting, L., Chun-ying, D., Hong, M. & Qing-jin, M. (2003). *Inorg. Chem.* 42, 2519–2530.

Gao, Y., Twamley, B. & Shreeve, J. M. (2004). Inorg. Chem. 43, 3406-3412.

- Gao, Y., Twamley, B. & Shreeve, J. M. (2006). Organometallics, 25, 3364–3369.
 Han, Z.-B., Cheng, X.-N. & Chen, X.-M. (2005). Cryst. Growth Des. 5, 695–700.
 Jia, H.-P., Li, W., Ju, Z.-F. & Zhang, J. (2007). Inorg. Chem. Commun. 10, 265–268.
- Li, G., Hou, H., Li, L., Meng, X., Fan, Y. & Zhu, Y. (2003). Inorg. Chem. 42, 4995–5004.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Wilkes, S. B., Butler, I. R., Underhill, A. E., Hursthouse, M. B., Hibbs, D. E. & Malik, K. M. A. (1995). J. Chem. Soc. Dalton Trans. pp. 897–903.

Acta Cryst. (2007). E63, m1717 [doi:10.1107/S1600536807024294]

A two-dimensional Co^{II} coordination polymer with the ligand 1,1'-bis[(1*H*-1,2,4-triazol-1-yl)methyl]ferrocene

X.-L. Zhou, X.-R. Meng and H.-W. Hou

Comment

Within the research field of metal-organic compounds, ferrocene derivatives have attracted much attention in the construction of metal-organic polymers and supramolecular architectures, due to their potential applications: electrochemical sensors, potential antitumor agents, monomers for extended stacked complexes, and even units for self-assembly (Li et al., 2003). We use ferrocene-containing ligand 1,1'-bis[(1H-1,2,4-triazol-1-yl)methyl]ferrocene, btmf, to construct ferrocene-containing metal-organic polymers (Gao et al., 2004, 2006). It is suggested that introducing ferrocene groups into coordination polymers can lead to interesting assembled structures, because of their conformational flexibility. The ferrocene groups usually behave as the ball-joints, and so the bidentate representatives can adapt as chelating or bridging groups to different geometric requirements of the metal centers (Dong et al., 2003). Herein, we describe a metal-organic polymer of Co^{II} with btmf, in which ferrocene-based ligands behave as bridges connecting the adjacent Co^{II} ions to form a two dimensional network. Fig. 1 depicts the coordination geometry of the Co^{II} center. Each Co^{II} ion is coordinated by four N atoms from btmf ligands [N1, N7, N6^{*i*} and N12^{*ii*}; symmetry codes: (i) 3/2 - x, 1/2 + y, 1/2 - z; (ii) 3/2 - x, 1/2 + y, 3/2 - z], one O atom (O13) from water molecule and one O atom (O1) from an ethanol molecule, leading to an slightly distorted octahedral geometry. The Co1-N bond lengths range from 2.149 (4) to 2.157 (4) Å (see deposited Table), and they are all within the range of those reported for related complexes (Han et al. 2005, Chen et al., 2005). The Co1—O1 bond length of 2.118 (3) Å and Co1—O13 = 2.093 (4) Å are also close to those reported in analogous compounds (e.g. Jia et al., 2007). Cis and trans angles around Co^{II} ion range from 88.06 (15)° to 93.51 (15) and 177.00 (16) to 178.09 (16)°. Fig. 2 displays the packing arrangement of the title compound, in which the btmf bridging ligands connect the Co^{II} ions to form layers parallel to the *bc* plane. The repeating unit of the two dimensional network possesses a 8-membered grid (size *ca*. 12.701×12.922 Å²) which is composed of four btmf groups acting as four edges and four Co^{II} ions representing the four vertexes. These two dimensional layers are interconnected by extensive hydrogen bonds, leading to a three dimensional supramolecular framework (Fig. 3).

Experimental

Dichloromethane was distilled from P₂O₅. Other chemicals (A·*R*. Grade) were obtained commercially without further purification. The preparation of btmf followed a published method (Wilkes *et al.*, 1995) and was modified by us. The title polymer was synthesized as follows: A solution of btmf (3.5 mg, 0.01 mmol) in ethanol (5 cm³) was slowly added to a solution of Co(ClO₄)₂ (2.6 mg, 0.01 mmol) in ethanol (3 cm³) and water. The mixture was sealed in a small glass vial and allowed to stand over 36 h. Orange single crystals appeared after this time. Yield: 49%. Anal. Calcd for C₄₀H₅₈Cl₂CoFe₂N₁₂O₁₃: C 41.54, H 5.05, N 14.53%. Found: C 41.50, H 4.96, N 14.52%.

Refinement

Hydroxy H atoms of the water and ethanol molecules were located in a difference map and refined with isotropic displacement parameters fixed to $U_{iso}(H) = 1.5U_{eq}(\text{carrier O})$. Other H atoms were included in calculated positions and refined using a riding model, with C—H = 0.93–0.98 Å, and $U_{iso}(H) = 1.5U_{eq}(\text{carrier C})$ for methyl groups and $U_{iso}(H) = 1.2U_{eq}(\text{carrier C})$ otherwise.

Figures

Fig. 1. Coordination geometry of the Co^{II} center in the title polymer with atom numbering, showing 30% displacement ellipsoids. H atoms have been omitted for clarity.

Fig. 2. Two dimensional layered structure of the title polymer, in which all H atoms, lattice solvents and counterions are omitted for clarity.

Fig. 3. Packing diagram of the title compound, showing the three-dimensional supramolecular network.

$poly[[aquabis{\mu_2-1,1'-bis[(1H-1,2,4-triazol-1-yl)methyl] \ ferrocene-\kappa^2 N^4: N^{4'} \ ethanolcobalt(II)] \ bis(perchlorate) \ ethanol \ trisolvate]$

Crystal data

[CoFe₂(C₈H₈N₃)₄(C₂H₆O)(H₂O)](ClO₄)₂·C₆H₆O $F_{000} = 2396$ $M_r = 1156.51$ $D_{\rm x} = 1.465 {\rm Mg m}^{-3}$ Mo Kα radiation Monoclinic, $P2_1/n$ $\lambda = 0.71073 \text{ \AA}$ Hall symbol: -P 2yn Cell parameters from 4968 reflections $\theta = 2.4 - 23.7^{\circ}$ *a* = 17.3708 (11) Å b = 14.2250 (9) Å $\mu = 1.03 \text{ mm}^{-1}$ T = 291 (2) Kc = 21.2747 (14) Å $\beta = 94.224 (1)^{\circ}$ Block, orange

V = 5242.7 (6) Å³ Z = 4

 $0.20\times0.15\times0.08~mm$

Data collection

Bruker SMART CCD area-detector diffractometer	9696 independent reflections
Radiation source: fine-focus sealed tube	6313 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.037$
T = 291(2) K	$\theta_{\text{max}} = 25.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.4^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2004)	$h = -21 \rightarrow 20$
$T_{\min} = 0.817, \ T_{\max} = 0.919$	$k = -17 \rightarrow 17$
27120 measured reflections	$l = -16 \rightarrow 25$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.057$	H-atom parameters constrained
$wR(F^2) = 0.190$	$w = 1/[\sigma^2(F_o^2) + (0.0987P)^2 + 5.0582P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{\rm max} = 0.001$
9696 reflections	$\Delta \rho_{max} = 0.61 \text{ e} \text{ Å}^{-3}$
635 parameters	$\Delta \rho_{min} = -0.53 \text{ e } \text{\AA}^{-3}$
720 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Col	0.76780 (4)	0.47416 (4)	0.50420 (3)	0.04369 (19)
Fe1	0.99384 (4)	0.41748 (5)	0.16723 (3)	0.0454 (2)
Fe2	0.98856 (4)	0.00490 (5)	0.66848 (3)	0.0572 (2)
Cl1	0.73105 (11)	0.25768 (14)	0.22650 (10)	0.0969 (6)
Cl2	0.79526 (10)	0.25124 (11)	0.75988 (8)	0.0780 (4)
01	0.8175 (2)	0.5938 (2)	0.55053 (15)	0.0562 (8)
H1D	0.7822	0.6420	0.5547	0.084*
O2	0.7185 (4)	0.7314 (4)	0.5717 (3)	0.136 (2)
H2D	0.6989	0.7381	0.6053	0.204*
O3	0.7871 (4)	0.2248 (5)	0.3956 (3)	0.157 (3)
H3D	0.7918	0.2335	0.3563	0.236*
O4	0.5688 (3)	0.3181 (6)	0.4625 (3)	0.176 (3)
H4D	0.5396	0.3464	0.4862	0.265*
05	0.6616 (5)	0.2462 (6)	0.2507 (5)	0.204 (4)

O6	0.7527 (4)	0.1720 (6)	0.2071 (5)	0.204 (4)
O7	0.7274 (6)	0.3137 (11)	0.1764 (6)	0.324 (7)
O8	0.7851 (7)	0.2927 (8)	0.2667 (4)	0.257 (5)
O9	0.8093 (3)	0.3400 (4)	0.7360 (3)	0.130 (2)
O10	0.8577 (4)	0.2163 (5)	0.7989 (3)	0.159 (3)
O11	0.7290 (3)	0.2535 (5)	0.7933 (3)	0.143 (2)
O12	0.7806 (5)	0.1913 (5)	0.7054 (3)	0.162 (3)
O13	0.7150 (2)	0.3602 (3)	0.45607 (17)	0.0675 (10)
H1W	0.7436	0.3120	0.4518	0.101*
H2W	0.6720	0.3603	0.4295	0.101*
N1	0.8276 (2)	0.5102 (3)	0.42227 (17)	0.0453 (9)
N2	0.9179 (3)	0.5739 (3)	0.36527 (18)	0.0625 (12)
N3	0.8726 (2)	0.5145 (3)	0.32994 (17)	0.0485 (9)
N4	0.9068 (2)	0.1511 (3)	0.08487 (18)	0.0511 (9)
N5	0.9494 (3)	0.1182 (4)	0.0387 (2)	0.0713 (13)
N6	0.8300 (2)	0.0581 (3)	0.02814 (18)	0.0487 (9)
N7	0.8620 (2)	0.3837 (3)	0.53572 (18)	0.0544 (10)
N8	0.9633 (3)	0.2874 (3)	0.5306 (2)	0.0655 (12)
N9	0.9364 (2)	0.2847 (3)	0.58887 (19)	0.0540 (10)
N10	0.8390 (2)	-0.0544 (3)	0.82146 (18)	0.0545 (10)
N11	0.8619 (3)	-0.1382(3)	0.8469 (2)	0.0640 (12)
N12	0.7895 (2)	-0.0588 (3)	0.91196 (18)	0.0516 (10)
C1	0.8884 (3)	0.5698 (4)	0.4198 (2)	0.0561 (12)
H1	0.9075	0.6049	0.4544	0.067*
C2	0.8196 (3)	0.4775 (3)	0.3636(2)	0.0482 (11)
H2A	0.7821	0.4348	0.3486	0.058*
C3	0.8832 (3)	0 5020 (4)	0 2620 (2)	0.0562 (12)
НЗА	0.8753	0.5618	0.2406	0.067*
H3B	0.8447	0.4583	0 2441	0.067*
C4	0.9617 (3)	0 4658 (3)	0.2511 (2)	0.0461 (10)
C5	0.9874(3)	0 3713 (3)	0.2567(2)	0.0502 (11)
н5	0.9569	0.3177	0.2697	0.060*
C6	1 0645 (3)	0.3680 (4)	0.2406 (2)	0.000
H6	1.0015 (5)	0.3115	0.2399	0.075*
C7	1.0907	0.4598 (4)	0.22399	0.0657 (13)
H7	1 1379	0.4779	0.2219(2)	0.079*
C8	1.1377	0.4779	0.2112 0.2321(2)	0.079
C8 H8	1.0246	0.5204 (4)	0.2321 (2)	0.0500 (12)
C9	0.9514(3)	0.3123 (3)	0.2241 0.1103 (2)	0.070
C10	1.0205(3)	0.3123(3) 0.3492(4)	0.1105(2) 0.0875(2)	0.0492(10) 0.0648(13)
L10	1.0205 (5)	0.3492 (4)	0.0875 (2)	0.0048 (15)
C11	1.0079	0.3138	0.0321	0.078
U11	1.0089 (4)	0.4443 (3)	0.0740 (2)	0.00770(10)
C12	1.0471	0.4870	0.0390	0.095
H12	0.9550 (4)	0.5311	0.0837	0.007*
C12	0.9103	0.3311 0.3874 (4)	0.0007	0.097
U13 H12	0.07/4 (5)	0.3074 (4)	0.1104(2) 0.1234	0.0017(12)
C14	0.0300 (2)	0.3650	0.1234 0.1220 (2)	0.074
	0.9399 (3)	0.2132 (4)	0.1557 (2)	0.0551 (12)
1114/1	0.7072	0.1903	0.1307	0.000

H14B	0.9059	0.2176	0.1680	0.066*
C15	0.8369 (3)	0.1150 (3)	0.0778 (2)	0.0495 (11)
H15	0.7976	0.1276	0.1040	0.059*
C16	0.9004 (3)	0.0642 (4)	0.0058 (3)	0.0668 (15)
H16	0.9132	0.0324	-0.0302	0.080*
C17	0.9174 (3)	0.3469 (4)	0.5008 (2)	0.0608 (14)
H17	0.9219	0.3632	0.4588	0.073*
C18	0.8777 (3)	0.3420 (4)	0.5913 (2)	0.0584 (13)
H18	0.8508	0.3521	0.6268	0.070*
C19	0.9713 (3)	0.2233 (4)	0.6387 (3)	0.0625 (13)
H19A	0.9432	0.2291	0.6762	0.075*
H19B	1.0243	0.2422	0.6493	0.075*
C20	0.9691 (3)	0.1234 (4)	0.6165 (2)	0.0581 (12)
C21	0.9044 (4)	0.0643 (4)	0.6106 (2)	0.0677 (13)
H21	0.8525	0.0805	0.6222	0.081*
C22	0.9267 (5)	-0.0235 (5)	0.5860 (3)	0.0943 (19)
H22	0.8930	-0.0779	0.5775	0.113*
C23	1.0045 (6)	-0.0184 (5)	0.5759 (3)	0.102 (2)
H23	1.0352	-0.0694	0.5596	0.123*
C24	1.0319 (4)	0.0703 (5)	0.5934 (3)	0.0826 (17)
H24	1.0851	0.0924	0.5913	0.099*
C25	0.9410 (3)	-0.0312 (3)	0.7488 (2)	0.0508 (11)
C26	0.9810 (4)	-0.1091 (4)	0.7249 (3)	0.0728 (15)
H26	0.9581	-0.1698	0.7123	0.087*
C27	1.0590 (4)	-0.0837 (6)	0.7222 (3)	0.101 (2)
H27	1.0998	-0.1234	0.7070	0.122*
C28	1.0678 (4)	0.0085 (7)	0.7445 (3)	0.101 (2)
H28	1.1160	0.0446	0.7474	0.122*
C29	0.9945 (4)	0.0420 (5)	0.7609 (2)	0.0704 (14)
H29	0.9836	0.1043	0.7778	0.084*
C30	0.8570 (3)	-0.0280 (4)	0.7572 (2)	0.0609 (13)
H30A	0.8381	0.0351	0.7482	0.073*
H30B	0.8304	-0.0704	0.7273	0.073*
C31	0.7960 (3)	-0.0093 (4)	0.8605 (2)	0.0545 (12)
H31	0.7734	0.0492	0.8525	0.065*
C32	0.8304 (3)	-0.1372 (4)	0.9008 (2)	0.0580 (13)
H32	0.8358	-0.1866	0.9294	0.070*
C33	0.8870 (4)	0.6021 (4)	0.5903 (3)	0.0772 (17)
H33A	0.9258	0.5611	0.5745	0.093*
H33B	0.8773	0.5808	0.6323	0.093*
C34	0.9180 (4)	0.7002 (5)	0.5943 (3)	0.089 (2)
H34A	0.9209	0.7250	0.5526	0.134*
H34B	0.9686	0.6997	0.6158	0.134*
H34C	0.8844	0.7389	0.6172	0.134*
C35	0.7069 (9)	0.8145 (6)	0.5347 (5)	0.191 (6)
H35A	0.6646	0.8028	0.5033	0.229*
H35B	0.7528	0.8246	0.5122	0.229*
C36	0.6903 (9)	0.9023 (6)	0.5674 (6)	0.214 (5)
H36A	0.6492	0.8919	0.5943	0.320*

H36B	0.6752	0.9498	0.5369	0.320*
H36C	0.7356	0.9225	0.5922	0.320*
C37	0.7846 (8)	0.1253 (7)	0.4087 (7)	0.228 (7)
H37A	0.8335	0.0972	0.3997	0.274*
H37B	0.7445	0.0965	0.3809	0.274*
C38	0.7694 (10)	0.1044 (11)	0.4748 (6)	0.262 (7)
H38A	0.8096	0.1313	0.5026	0.393*
H38B	0.7683	0.0376	0.4809	0.393*
H38C	0.7206	0.1308	0.4838	0.393*
C39	0.5220 (7)	0.2888 (11)	0.4075 (5)	0.208 (5)
H39A	0.4998	0.3446	0.3872	0.250*
H39B	0.4797	0.2515	0.4213	0.250*
C40	0.5592 (12)	0.2351 (14)	0.3605 (6)	0.311 (11)
H40A	0.6037	0.2686	0.3484	0.467*
H40B	0.5237	0.2261	0.3243	0.467*
H40C	0.5747	0.1751	0.3777	0.467*

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Co1	0.0492 (4)	0.0446 (4)	0.0386 (3)	0.0021 (3)	0.0122 (3)	0.0050 (3)
Fe1	0.0553 (4)	0.0462 (4)	0.0354 (3)	-0.0015 (3)	0.0081 (3)	-0.0022 (3)
Fe2	0.0660 (5)	0.0577 (5)	0.0497 (4)	0.0107 (4)	0.0176 (4)	0.0195 (3)
C11	0.0853 (12)	0.0957 (13)	0.1141 (15)	-0.0164 (10)	0.0376 (11)	-0.0268 (11)
Cl2	0.0777 (10)	0.0695 (9)	0.0881 (11)	0.0086 (8)	0.0156 (8)	0.0049 (8)
01	0.061 (2)	0.058 (2)	0.0497 (19)	0.0000 (16)	0.0043 (16)	-0.0076 (16)
O2	0.187 (6)	0.125 (4)	0.095 (4)	0.063 (4)	0.010 (4)	-0.025 (3)
O3	0.183 (7)	0.130 (5)	0.160 (6)	0.035 (5)	0.024 (5)	-0.029 (4)
O4	0.084 (4)	0.269 (9)	0.176 (6)	-0.020 (5)	0.006 (4)	-0.042 (6)
O5	0.163 (6)	0.190 (7)	0.278 (10)	-0.035 (6)	0.136 (7)	-0.055 (7)
O6	0.147 (6)	0.183 (6)	0.288 (10)	-0.009 (5)	0.058 (7)	-0.119 (6)
07	0.208 (10)	0.428 (14)	0.338 (12)	0.004 (10)	0.029 (8)	0.257 (13)
08	0.312 (10)	0.295 (11)	0.165 (7)	-0.214 (10)	0.026 (6)	-0.073 (6)
09	0.125 (5)	0.101 (4)	0.167 (6)	-0.016 (3)	0.032 (4)	0.032 (4)
O10	0.145 (5)	0.164 (6)	0.160 (6)	0.069 (5)	-0.047 (4)	-0.007 (4)
011	0.098 (4)	0.231 (7)	0.104 (4)	-0.031 (4)	0.034 (3)	0.025 (4)
012	0.211 (7)	0.131 (5)	0.139 (5)	0.040 (5)	-0.018 (4)	-0.055 (4)
013	0.071 (2)	0.060 (2)	0.072 (2)	-0.0039 (18)	0.0140 (19)	-0.0092 (18)
N1	0.053 (2)	0.045 (2)	0.0384 (19)	-0.0008 (17)	0.0109 (17)	0.0019 (16)
N2	0.076 (3)	0.070 (3)	0.044 (2)	-0.024 (2)	0.020 (2)	-0.011 (2)
N3	0.058 (2)	0.050 (2)	0.039 (2)	0.0012 (18)	0.0133 (18)	-0.0002 (17)
N4	0.053 (2)	0.053 (2)	0.047 (2)	-0.0011 (19)	0.0056 (18)	-0.0067 (18)
N5	0.051 (2)	0.092 (3)	0.073 (3)	-0.010 (2)	0.014 (2)	-0.033 (3)
N6	0.047 (2)	0.050 (2)	0.050 (2)	-0.0041 (17)	0.0092 (18)	-0.0075 (18)
N7	0.061 (2)	0.055 (2)	0.050 (2)	0.0086 (19)	0.0152 (19)	0.0115 (19)
N8	0.062 (3)	0.075 (3)	0.061 (3)	0.018 (2)	0.019 (2)	0.021 (2)
N9	0.056 (2)	0.052 (2)	0.054 (2)	0.0006 (19)	0.0050 (19)	0.0151 (19)
N10	0.058 (3)	0.063 (3)	0.045 (2)	0.002 (2)	0.0160 (19)	-0.0011 (19)

N11	0.073 (3)	0.071 (3)	0.051 (2)	0.019 (2)	0.025 (2)	0.004 (2)
N12	0.057 (2)	0.052 (2)	0.048 (2)	-0.0028 (19)	0.0166 (19)	-0.0078 (18)
C1	0.064 (3)	0.063 (3)	0.043 (3)	-0.016 (2)	0.013 (2)	-0.007 (2)
C2	0.051 (3)	0.050 (3)	0.044 (2)	-0.004 (2)	0.010 (2)	-0.003 (2)
C3	0.071 (3)	0.065 (3)	0.034 (2)	0.005 (2)	0.010 (2)	-0.004 (2)
C4	0.059 (3)	0.046 (2)	0.034 (2)	-0.003 (2)	0.0090 (19)	-0.0033 (18)
C5	0.067 (3)	0.048 (2)	0.036 (2)	-0.002 (2)	0.002 (2)	0.0002 (19)
C6	0.070 (3)	0.072 (3)	0.044 (3)	0.016 (3)	-0.001 (2)	-0.004 (2)
C7	0.052 (3)	0.090 (4)	0.056 (3)	-0.013 (3)	0.007 (2)	-0.010 (3)
C8	0.077 (3)	0.052 (3)	0.045 (3)	-0.018 (2)	0.008 (2)	-0.005 (2)
C9	0.058 (3)	0.054 (2)	0.036 (2)	-0.002 (2)	0.005 (2)	-0.0080 (19)
C10	0.079 (3)	0.074 (3)	0.044 (3)	-0.008 (3)	0.019 (2)	-0.011 (2)
C11	0.122 (5)	0.073 (3)	0.040 (2)	-0.024 (3)	0.019 (3)	0.002 (3)
C12	0.127 (5)	0.061 (3)	0.050 (3)	0.010 (3)	-0.020 (3)	0.002 (3)
C13	0.066 (3)	0.071 (3)	0.046 (3)	0.007 (2)	-0.009 (2)	-0.007 (2)
C14	0.059 (3)	0.060 (3)	0.045 (3)	-0.006 (2)	0.000 (2)	-0.009 (2)
C15	0.053 (3)	0.051 (3)	0.046 (3)	-0.004 (2)	0.008 (2)	-0.008 (2)
C16	0.053 (3)	0.083 (4)	0.066 (3)	-0.007 (3)	0.019 (3)	-0.029 (3)
C17	0.060 (3)	0.071 (3)	0.053 (3)	0.014 (3)	0.018 (2)	0.021 (3)
C18	0.073 (3)	0.055 (3)	0.049 (3)	0.010 (2)	0.016 (2)	0.013 (2)
C19	0.065 (3)	0.061 (3)	0.060 (3)	0.000(2)	-0.004 (3)	0.022 (2)
C20	0.064 (3)	0.061 (3)	0.050 (3)	0.009 (2)	0.013 (2)	0.023 (2)
C21	0.082 (3)	0.063 (3)	0.057 (3)	0.000(2)	-0.003 (2)	0.017 (2)
C22	0.152 (6)	0.065 (3)	0.063 (3)	-0.002 (4)	-0.009 (4)	0.010 (3)
C23	0.175 (6)	0.081 (4)	0.056 (3)	0.039 (4)	0.040 (4)	0.019 (3)
C24	0.096 (4)	0.089 (4)	0.068 (3)	0.024 (3)	0.039 (3)	0.042 (3)
C25	0.060 (3)	0.052 (3)	0.042 (2)	0.005 (2)	0.013 (2)	0.007 (2)
C26	0.103 (4)	0.059 (3)	0.061 (3)	0.028 (3)	0.038 (3)	0.028 (2)
C27	0.086 (4)	0.130 (5)	0.094 (5)	0.053 (4)	0.045 (3)	0.072 (4)
C28	0.064 (3)	0.162 (6)	0.078 (4)	-0.017 (4)	0.002 (3)	0.059 (4)
C29	0.084 (4)	0.076 (3)	0.051 (2)	-0.014 (3)	-0.002 (3)	0.012 (2)
C30	0.065 (3)	0.077 (4)	0.042 (3)	0.003 (3)	0.015 (2)	0.002 (2)
C31	0.061 (3)	0.053 (3)	0.052 (3)	0.007 (2)	0.019 (2)	0.001 (2)
C32	0.071 (3)	0.053 (3)	0.053 (3)	0.008 (2)	0.020 (3)	0.001 (2)
C33	0.090 (4)	0.081 (4)	0.057 (3)	-0.010 (3)	-0.019 (3)	-0.001 (3)
C34	0.090 (5)	0.102 (5)	0.076 (4)	-0.026 (4)	0.009 (4)	-0.023 (4)
C35	0.285 (15)	0.122 (8)	0.153 (10)	0.075 (9)	-0.069 (10)	-0.008 (6)
C36	0.247 (10)	0.170 (7)	0.225 (9)	0.040 (8)	0.022 (8)	-0.013 (7)
C37	0.221 (14)	0.183 (9)	0.292 (14)	0.092 (11)	0.096 (13)	0.070 (13)
C38	0.264 (11)	0.275 (11)	0.245 (9)	-0.015 (9)	0.005 (8)	0.054 (8)
C39	0.198 (9)	0.259 (10)	0.160 (8)	0.003 (8)	-0.031 (6)	-0.045 (7)
C40	0.38 (3)	0.30 (2)	0.254 (17)	0.09 (2)	-0.007 (16)	-0.097 (15)
Geometric _I	parameters (Å, °)					

Co1—O13	2.093 (4)	C4—C5	1.420 (7)
Co1—O1	2.118 (3)	C4—C8	1.431 (7)
Co1—N6 ⁱ	2.149 (4)	C5—C6	1.407 (7)
Co1—N7	2.149 (4)	С5—Н5	0.9800

Co1—N1	2.156 (3)	C6—C7	1.411 (8)
Co1—N12 ⁱⁱ	2.157 (4)	С6—Н6	0.9800
Fe1—C5	2.023 (4)	C7—C8	1.399 (8)
Fe1—C9	2.030 (5)	С7—Н7	0.9800
Fe1—C4	2.029 (4)	С8—Н8	0.9800
Fe1—C13	2.038 (5)	C9—C13	1.421 (7)
Fe1—C10	2.037 (5)	C9—C10	1.428 (7)
Fe1—C6	2.038 (5)	C9—C14	1.487 (7)
Fe1—C11	2.043 (5)	C10—C11	1.395 (8)
Fe1—C12	2.045 (6)	C10—H10	0.9800
Fe1—C7	2.052 (5)	C11—C12	1.400 (9)
Fe1—C8	2.057 (5)	C11—H11	0.9800
Fe2—C25	2.019 (4)	C12—C13	1.412 (8)
Fe2—C21	2.024 (6)	C12—H12	0.9800
Fe2—C26	2.027 (5)	С13—Н13	0.9800
Fe2—C22	2.029 (7)	C14—H14A	0.9700
Fe2—C29	2.031 (6)	C14—H14B	0.9700
Fe2—C20	2.031 (5)	С15—Н15	0.9300
Fe2—C23	2.036 (6)	С16—Н16	0.9300
Fe2—C24	2.039 (5)	С17—Н17	0.9300
Fe2—C27	2.045 (6)	C18—H18	0.9300
Fe2—C28	2.046 (7)	C19—C20	1.497 (8)
Cl1—O8	1.320 (8)	С19—Н19А	0.9700
Cl1—07	1.329 (10)	С19—Н19В	0.9700
Cl1—O6	1.349 (7)	C20—C21	1.402 (8)
Cl1—O5	1.357 (6)	C20—C24	1.443 (8)
Cl2—O9	1.389 (5)	C21—C22	1.418 (9)
Cl2—O11	1.397 (5)	C21—H21	0.9800
Cl2—O10	1.406 (6)	C22—C23	1.385 (11)
Cl2—O12	1.446 (6)	С22—Н22	0.9800
O1—C33	1.428 (6)	C23—C24	1.390 (10)
O1—H1D	0.9286	С23—Н23	0.9800
O2—C35	1.427 (7)	C24—H24	0.9800
O2—H2D	0.8200	C25—C29	1.407 (8)
O3—C37	1.445 (8)	C25—C26	1.421 (7)
O3—H3D	0.8545	C25—C30	1.483 (7)
O4—C39	1.437 (8)	C26—C27	1.408 (10)
O4—H4D	0.8430	С26—Н26	0.9800
O13—H1W	0.8548	C27—C28	1.400 (11)
O13—H2W	0.9031	С27—Н27	0.9800
N1—C2	1.329 (6)	C28—C29	1.426 (9)
N1—C1	1.357 (6)	C28—H28	0.9800
N2—C1	1.304 (6)	С29—Н29	0.9800
N2—N3	1.345 (5)	C30—H30A	0.9700
N3—C2	1.317 (5)	С30—Н30В	0.9700
N3—C3	1.481 (5)	С31—Н31	0.9300
N4—C15	1.317 (6)	С32—Н32	0.9300
N4—N5	1.357 (5)	C33—C34	1.497 (8)
N4	1.470 (6)	С33—Н33А	0.9700

N5—C16	1.310 (7)	С33—Н33В	0.9700
N6—C15	1.329 (6)	C34—H34A	0.9600
N6—C16	1.346 (6)	C34—H34B	0.9600
N6—Co1 ⁱⁱⁱ	2.149 (4)	C34—H34C	0.9600
N7—C18	1.333 (6)	C35—C36	1.468 (8)
N7—C17	1.363 (6)	C35—H35A	0.9700
N8—C17	1.296 (6)	С35—Н35В	0.9700
N8—N9	1.357 (5)	C36—H36A	0.9600
N9—C18	1.308 (6)	С36—Н36В	0.9600
N9—C19	1.469 (6)	С36—Н36С	0.9600
N10-C31	1.323 (6)	C37—C38	1.480 (9)
N10—N11	1.357 (6)	С37—Н37А	0.9700
N10-C30	1.473 (6)	С37—Н37В	0.9700
N11—C32	1.305 (6)	C38—H38A	0.9600
N12—C31	1.314 (6)	C38—H38B	0.9600
N12—C32	1.353 (6)	C38—H38C	0.9600
N12—Co1 ^{iv}	2.157 (4)	C39—C40	1.446 (9)
C1—H1	0.9300	С39—Н39А	0.9700
C2—H2A	0.9300	С39—Н39В	0.9700
C3—C4	1.491 (7)	C40—H40A	0.9600
С3—НЗА	0.9700	C40—H40B	0.9600
С3—Н3В	0.9700	C40—H40C	0.9600
O13—Co1—O1	177.28 (14)	C8—C7—Fe1	70.3 (3)
O13—Co1—N6 ⁱ	88.06 (15)	C6—C7—Fe1	69.3 (3)
O1—Co1—N6 ⁱ	89.30 (15)	С8—С7—Н7	125.9
O13—Co1—N7	89.14 (16)	С6—С7—Н7	125.9
O1—Co1—N7	93.51 (15)	Fe1—C7—H7	125.9
N6 ⁱ —Co1—N7	177.00 (16)	C7—C8—C4	108.3 (5)
O13—Co1—N1	90.49 (14)	C7—C8—Fe1	69.9 (3)
O1—Co1—N1	88.92 (13)	C4—C8—Fe1	68.4 (3)
N6 ⁱ —Co1—N1	91.48 (14)	С7—С8—Н8	125.8
N7—Co1—N1	89.63 (14)	C4—C8—H8	125.8
O13—Co1—N12 ⁱⁱ	91.36 (15)	Fe1—C8—H8	125.8
O1—Co1—N12 ⁱⁱ	89.25 (14)	C13—C9—C10	107.1 (5)
N6 ⁱ —Co1—N12 ⁱⁱ	89.05 (15)	C13—C9—C14	126.3 (5)
N7—Co1—N12 ⁱⁱ	89.94 (15)	C10—C9—C14	126.4 (5)
N1—Co1—N12 ⁱⁱ	178.09 (16)	C13—C9—Fe1	69.8 (3)
C5—Fe1—C9	106.20 (19)	C10-C9-Fe1	69.7 (3)
C5—Fe1—C4	41.01 (18)	C14-C9-Fe1	122.3 (3)
C9—Fe1—C4	131.56 (19)	С11—С10—С9	108.2 (5)
C5—Fe1—C13	113.0 (2)	C11—C10—Fe1	70.2 (3)
C9—Fe1—C13	40.9 (2)	C9—C10—Fe1	69.2 (3)
C4—Fe1—C13	109.0 (2)	C11—C10—H10	125.9
C5—Fe1—C10	131.3 (2)	С9—С10—Н10	125.9
C9—Fe1—C10	41.1 (2)	Fe1—C10—H10	125.9
C4—Fe1—C10	171.2 (2)	C10-C11-C12	108.6 (6)

C13—Fe1—C10	68.4 (2)	C10-C11-Fe1	69.8 (3)
C5—Fe1—C6	40.5 (2)	C12-C11-Fe1	70.0 (3)
C9—Fe1—C6	112.0 (2)	C10—C11—H11	125.7
C4—Fe1—C6	68.5 (2)	C12—C11—H11	125.7
C13—Fe1—C6	143.5 (2)	Fe1—C11—H11	125.7
C10—Fe1—C6	108.2 (2)	C11—C12—C13	108.5 (5)
C5—Fe1—C11	171.0 (2)	C11—C12—Fe1	69.9 (3)
C9—Fe1—C11	68.3 (2)	C13—C12—Fe1	69.5 (3)
C4—Fe1—C11	147.9 (2)	С11—С12—Н12	125.8
C13—Fe1—C11	68.0 (3)	C13—C12—H12	125.8
C10—Fe1—C11	40.0 (2)	Fe1—C12—H12	125.8
C6—Fe1—C11	133.7 (3)	C12—C13—C9	107.6 (5)
C5—Fe1—C12	145.9 (3)	C12-C13-Fe1	70.0 (3)
C9—Fe1—C12	68.3 (2)	C9—C13—Fe1	69.3 (3)
C4—Fe1—C12	116.5 (2)	C12—C13—H13	126.2
C13—Fe1—C12	40.5 (2)	С9—С13—Н13	126.2
C10—Fe1—C12	67.5 (3)	Fe1—C13—H13	126.2
C6—Fe1—C12	173.6 (3)	N4—C14—C9	113.0 (4)
C11—Fe1—C12	40.0 (3)	N4—C14—H14A	109.0
C5—Fe1—C7	68.2 (2)	C9—C14—H14A	109.0
C9—Fe1—C7	144.1 (2)	N4—C14—H14B	109.0
C4—Fe1—C7	68.4 (2)	C9—C14—H14B	109.0
C13—Fe1—C7	174.9 (2)	H14A—C14—H14B	107.8
C10—Fe1—C7	114.8 (2)	N4—C15—N6	110.9 (4)
C6—Fe1—C7	40.4 (2)	N4—C15—H15	124.6
C11—Fe1—C7	111.7 (3)	N6—C15—H15	124.6
C12—Fe1—C7	136.1 (3)	N5—C16—N6	114.8 (4)
C5—Fe1—C8	68.32 (19)	N5—C16—H16	122.6
C9—Fe1—C8	172.51 (19)	N6—C16—H16	122.6
C4—Fe1—C8	40.98 (19)	N8—C17—N7	114.6 (4)
C13—Fe1—C8	135.5 (2)	N8—C17—H17	122.7
C10—Fe1—C8	146.4 (2)	N7—C17—H17	122.7
C6—Fe1—C8	67.5 (2)	N9—C18—N7	110.6 (4)
C11—Fe1—C8	117.8 (2)	N9—C18—H18	124.7
C12—Fe1—C8	113.1 (2)	N7—C18—H18	124.7
C7—Fe1—C8	39.8 (2)	N9—C19—C20	109.7 (4)
C25—Fe2—C21	107.4 (2)	N9—C19—H19A	109.7
C25—Fe2—C26	41.13 (19)	С20—С19—Н19А	109.7
C21—Fe2—C26	128.2 (3)	N9—C19—H19B	109.7
C25—Fe2—C22	117.2 (3)	C20—C19—H19B	109.7
C21—Fe2—C22	41.0 (3)	H19A—C19—H19B	108.2
C26—Fe2—C22	107.4 (3)	C21—C20—C24	106.0 (5)
C25—Fe2—C29	40.7 (2)	C21—C20—C19	126.8 (5)
C21—Fe2—C29	117.6 (3)	C24—C20—C19	127.0 (5)
C26—Fe2—C29	68.6 (2)	C21—C20—Fe2	69.5 (3)
C22—Fe2—C29	151.0 (3)	C24—C20—Fe2	69.5 (3)
C25—Fe2—C20	127.6 (2)	C19—C20—Fe2	128.1 (4)
C21—Fe2—C20	40.5 (2)	C20—C21—C22	108.8 (6)
C26—Fe2—C20	166.1 (2)	C20—C21—Fe2	70.0 (3)

C22—Fe2—C20	68.8 (2)	C22—C21—Fe2	69.7 (4)
C29—Fe2—C20	107.8 (2)	C20-C21-H21	125.6
C25—Fe2—C23	150.5 (3)	C22—C21—H21	125.6
C21—Fe2—C23	67.9 (3)	Fe2—C21—H21	125.6
C26—Fe2—C23	117.5 (3)	C23—C22—C21	107.9 (7)
C22—Fe2—C23	39.8 (3)	C23—C22—Fe2	70.3 (4)
C29—Fe2—C23	167.9 (3)	C21—C22—Fe2	69.4 (4)
C20—Fe2—C23	68.8 (2)	C23—C22—H22	126.0
C25—Fe2—C24	167.6 (2)	C21—C22—H22	126.0
C21—Fe2—C24	68.0 (3)	Fe2—C22—H22	126.0
C26—Fe2—C24	150.7 (2)	C22—C23—C24	108.9 (7)
C22—Fe2—C24	67.4 (3)	C22—C23—Fe2	69.8 (4)
C29—Fe2—C24	130.1 (3)	C24—C23—Fe2	70.2 (4)
C20—Fe2—C24	41.5 (2)	С22—С23—Н23	125.5
C23—Fe2—C24	39.9 (3)	С24—С23—Н23	125.5
C25—Fe2—C27	68.6 (2)	Fe2—C23—H23	125.5
C21—Fe2—C27	166.3 (3)	C23—C24—C20	108.3 (6)
C26—Fe2—C27	40.4 (3)	C23—C24—Fe2	69.9 (3)
C22—Fe2—C27	128.1 (3)	C20-C24-Fe2	68.9 (3)
C29—Fe2—C27	68.5 (3)	C23—C24—H24	125.9
C20—Fe2—C27	152.2 (3)	C20—C24—H24	125.9
C23—Fe2—C27	108.8 (3)	Fe2—C24—H24	125.9
C24—Fe2—C27	118.6 (3)	C29—C25—C26	107.9 (5)
C25—Fe2—C28	68.3 (2)	C29—C25—C30	126.7 (5)
C21—Fe2—C28	152.1 (3)	C26—C25—C30	125.3 (5)
C26—Fe2—C28	67.8 (3)	C29—C25—Fe2	70.1 (3)
C22—Fe2—C28	166.2 (4)	C26—C25—Fe2	69.8 (3)
C29—Fe2—C28	40.9 (3)	C30-C25-Fe2	124.2 (3)
C20—Fe2—C28	119.0 (3)	C27—C26—C25	108.2 (6)
C23—Fe2—C28	129.6 (4)	C27—C26—Fe2	70.5 (3)
C24—Fe2—C28	110.0 (3)	C25—C26—Fe2	69.1 (3)
C27—Fe2—C28	40.0 (3)	С27—С26—Н26	125.9
O8—Cl1—O7	106.4 (8)	C25—C26—H26	125.9
O8—Cl1—O6	109.8 (8)	Fe2—C26—H26	125.9
O7—Cl1—O6	107.1 (9)	C28—C27—C26	108.0 (6)
O8—Cl1—O5	114.2 (6)	C28—C27—Fe2	70.0 (4)
O7—Cl1—O5	112.7 (7)	C26—C27—Fe2	69.1 (3)
O6—Cl1—O5	106.5 (5)	С28—С27—Н27	126.0
O9—Cl2—O11	109.8 (4)	С26—С27—Н27	126.0
O9—Cl2—O10	112.8 (5)	Fe2—C27—H27	126.0
O11-Cl2-O10	109.6 (4)	C27—C28—C29	108.5 (6)
O9—Cl2—O12	105.6 (4)	C27—C28—Fe2	70.0 (4)
O11—Cl2—O12	108.6 (5)	C29—C28—Fe2	69.0 (4)
O10—Cl2—O12	110.3 (4)	C27—C28—H28	125.7
C33—O1—Co1	129.8 (3)	С29—С28—Н28	125.7
C33—O1—H1D	114.6	Fe2—C28—H28	125.7
Co1—O1—H1D	113.0	C25—C29—C28	107.4 (6)
C35—O2—H2D	109.5	C25—C29—Fe2	69.2 (3)
C37—O3—H3D	109.6	C28—C29—Fe2	70.1 (4)

C39—O4—H4D	107.3	С25—С29—Н29	126.3
Co1—O13—H1W	115.8	С28—С29—Н29	126.3
Co1—O13—H2W	128.1	Fe2—C29—H29	126.3
H1W—O13—H2W	113.2	N10-C30-C25	112.5 (4)
C2—N1—C1	102.1 (4)	N10-C30-H30A	109.1
C2—N1—Co1	130.7 (3)	С25—С30—Н30А	109.1
C1—N1—Co1	127.0 (3)	N10-C30-H30B	109.1
C1—N2—N3	102.6 (4)	С25—С30—Н30В	109.1
C2—N3—N2	110.5 (4)	H30A—C30—H30B	107.8
C2—N3—C3	128.7 (4)	N12—C31—N10	110.5 (4)
N2—N3—C3	120.8 (4)	N12—C31—H31	124.7
C15—N4—N5	109.2 (4)	N10-C31-H31	124.7
C15—N4—C14	129.2 (4)	N11—C32—N12	115.0 (5)
N5—N4—C14	121.5 (4)	N11—C32—H32	122.5
C16—N5—N4	102.8 (4)	N12—C32—H32	122.5
C15—N6—C16	102.2 (4)	O1—C33—C34	113.3 (5)
C15—N6—Co1 ⁱⁱⁱ	128.0 (3)	O1—C33—H33A	108.9
$C_{16} = N_{6} = C_{01}^{111}$	129.8 (3)	C34—C33—H33A	108.9
$C_{10} = N_0 = C_{01}$	129.0(3)	O1 C33 H33P	108.9
C_{10} N/ C_{11}	101.9(4) 130.2(3)	C_{24} C_{23} H_{23} H_{23} H_{23}	108.9
$C_{10} = N_{10} = C_{01}$	130.2(3)		107.7
C17 = N7 = C01	127.7(3) 103.0(4)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.7
C17 - N0 - N7	103.0(4)	$C_{33} = C_{34} = H_{34} P$	109.5
$C_{10} = N_{9} = N_{0}$	109.8(4) 128.5(4)	C_{33} C_{34} C	109.5
N8 N0 C10	128.3(4) 121.7(4)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$N_0 = N_1 = 0$	121.7(4)	$C_{33} - C_{34} - H_{34} C_{34}$	109.5
C31—N10—N11	109.7 (4)	$H_{24} = C_{24} = H_{24} C_{24}$	109.5
C31—N10—C30	128.8 (5)	H34B-C34-H34C	109.5
NII—NI0—C30	121.2 (4)	02 - 035 - 036	117.9(8)
C32—N11—N10	102.2 (4)	02—C35—H35A	107.8
C31—N12—C32	102.5 (4)	С36—С35—Н35А	107.8
$C31-N12-Co1^{1V}$	130.2 (3)	O2—C35—H35B	107.8
C32—N12—Co1 ^{iv}	127.2 (3)	С36—С35—Н35В	107.8
N2-C1-N1	114.8 (4)	H35A—C35—H35B	107.2
N2—C1—H1	122.6	С35—С36—Н36А	109.5
N1—C1—H1	122.6	С35—С36—Н36В	109.5
N3—C2—N1	110.0 (4)	H36A—C36—H36B	109.5
N3—C2—H2A	125.0	С35—С36—Н36С	109.5
N1—C2—H2A	125.0	H36A—C36—H36C	109.5
N3—C3—C4	112.0 (4)	H36B—C36—H36C	109.5
N3—C3—H3A	109.2	O3—C37—C38	112.9 (9)
С4—С3—НЗА	109.2	O3—C37—H37A	109.0
N3—C3—H3B	109.2	С38—С37—Н37А	109.0
С4—С3—Н3В	109.2	О3—С37—Н37В	109.0
НЗА—СЗ—НЗВ	107.9	С38—С37—Н37В	109.0
C5—C4—C8	107.0 (4)	Н37А—С37—Н37В	107.8
C5—C4—C3	126.9 (4)	C37—C38—H38A	109.5
C8—C4—C3	126.1 (5)	С37—С38—Н38В	109.5
C5—C4—Fe1	69.3 (2)	H38A—C38—H38B	109.5

C8—C4—Fe1	70.6 (3)	С37—С38—Н38С	109.5
C3—C4—Fe1	124.6 (3)	H38A—C38—H38C	109.5
C6—C5—C4	108.1 (4)	H38B—C38—H38C	109.5
C6—C5—Fe1	70.3 (3)	O4—C39—C40	117.5 (9)
C4—C5—Fe1	69.7 (3)	O4—C39—H39A	107.9
С6—С5—Н5	125.9	С40—С39—Н39А	107.9
С4—С5—Н5	125.9	O4—C39—H39B	107.9
Fe1—C5—H5	125.9	С40—С39—Н39В	107.9
C5—C6—C7	108.4 (5)	H39A—C39—H39B	107.2
C5—C6—Fe1	69.2 (3)	С39—С40—Н40А	109.5
C7—C6—Fe1	70.4 (3)	С39—С40—Н40В	109.5
С5—С6—Н6	125.8	H40A—C40—H40B	109.5
С7—С6—Н6	125.8	С39—С40—Н40С	109.5
Fe1—C6—H6	125.8	H40A—C40—H40C	109.5
C8—C7—C6	108.2 (5)	H40B—C40—H40C	109.5
N6 ⁱ —Co1—O1—C33	175.9 (4)	C15—N6—C16—N5	1.4 (7)
N7—Co1—O1—C33	-3.0 (4)	Co1 ⁱⁱⁱ —N6—C16—N5	-176.0 (4)
N1—Co1—O1—C33	-92.6 (4)	N9—N8—C17—N7	0.0 (6)
N12 ⁱⁱ —Co1—O1—C33	86.9 (4)	C18—N7—C17—N8	0.5 (7)
O13—Co1—N1—C2	9.4 (4)	Co1—N7—C17—N8	-173.9 (4)
O1—Co1—N1—C2	-167.9 (4)	N8—N9—C18—N7	0.9 (6)
N6 ⁱ —Co1—N1—C2	-78.7 (4)	C19—N9—C18—N7	-178.2 (5)
N7—Co1—N1—C2	98.5 (4)	C17—N7—C18—N9	-0.8 (6)
O13—Co1—N1—C1	-165.6 (4)	Co1—N7—C18—N9	173.3 (3)
O1—Co1—N1—C1	17.0 (4)	C18—N9—C19—C20	122.1 (6)
N6 ⁱ —Co1—N1—C1	106.3 (4)	N8—N9—C19—C20	-57.0 (6)
N7—Co1—N1—C1	-76.5 (4)	N9—C19—C20—C21	-75.0 (6)
C1—N2—N3—C2	-0.5 (6)	N9-C19-C20-C24	101.1 (6)
C1—N2—N3—C3	176.4 (4)	N9-C19-C20-Fe2	-166.9 (4)
C15—N4—N5—C16	0.8 (6)	C25—Fe2—C20—C21	-71.2 (4)
C14—N4—N5—C16	179.5 (5)	C26—Fe2—C20—C21	-39.1 (12)
O13—Co1—N7—C18	-101.5 (5)	C22—Fe2—C20—C21	37.5 (4)
O1—Co1—N7—C18	79.1 (5)	C29—Fe2—C20—C21	-111.9 (4)
N1—Co1—N7—C18	168.0 (5)	C23—Fe2—C20—C21	80.4 (4)
N12 ⁱⁱ —Co1—N7—C18	-10.1 (5)	C24—Fe2—C20—C21	117.0 (5)
O13—Co1—N7—C17	71.3 (5)	C27—Fe2—C20—C21	170.6 (6)
O1—Co1—N7—C17	-108.1 (5)	C28—Fe2—C20—C21	-155.1 (4)
N1—Co1—N7—C17	-19.2 (5)	C25—Fe2—C20—C24	171.8 (4)
N12 ⁱⁱ —Co1—N7—C17	162.7 (5)	C21—Fe2—C20—C24	-117.0 (5)
C17—N8—N9—C18	-0.6 (6)	C26—Fe2—C20—C24	-156.1 (10)
C17—N8—N9—C19	178.7 (5)	C22—Fe2—C20—C24	-79.5 (5)
C31—N10—N11—C32	-0.3 (6)	C29—Fe2—C20—C24	131.1 (4)
C30—N10—N11—C32	-175.5 (5)	C23—Fe2—C20—C24	-36.6 (5)
N3—N2—C1—N1	1.0 (6)	C27—Fe2—C20—C24	53.6 (7)
C2—N1—C1—N2	-1.2 (6)	C28—Fe2—C20—C24	87.9 (5)
Co1—N1—C1—N2	174.9 (4)	C25—Fe2—C20—C19	50.2 (6)
N2—N3—C2—N1	-0.3 (6)	C21—Fe2—C20—C19	121.4 (6)

C3—N3—C2—N1	-176.8 (4)	C26—Fe2—C20—C19	82.3 (12)
C1—N1—C2—N3	0.8 (5)	C22—Fe2—C20—C19	158.9 (6)
Co1—N1—C2—N3	-175.1 (3)	C29—Fe2—C20—C19	9.5 (5)
C2—N3—C3—C4	-123.2 (5)	C23—Fe2—C20—C19	-158.3 (6)
N2—N3—C3—C4	60.6 (6)	C24—Fe2—C20—C19	-121.6 (7)
N3—C3—C4—C5	79.9 (6)	C27—Fe2—C20—C19	-68.1 (8)
N3—C3—C4—C8	-101.1 (5)	C28—Fe2—C20—C19	-33.7 (6)
N3—C3—C4—Fe1	168.8 (3)	C24—C20—C21—C22	1.2 (6)
C9—Fe1—C4—C5	63.2 (4)	C19—C20—C21—C22	178.0 (5)
C13—Fe1—C4—C5	103.4 (3)	Fe2—C20—C21—C22	-59.1 (4)
C6—Fe1—C4—C5	-37.7 (3)	C24—C20—C21—Fe2	60.3 (3)
C11—Fe1—C4—C5	-177.9 (4)	C19—C20—C21—Fe2	-122.9 (5)
C12—Fe1—C4—C5	146.8 (3)	C25—Fe2—C21—C20	128.2 (3)
C7—Fe1—C4—C5	-81.2 (3)	C26—Fe2—C21—C20	168.9 (3)
C8—Fe1—C4—C5	-117.7 (4)	C22—Fe2—C21—C20	-120.0 (5)
C5—Fe1—C4—C8	117.7 (4)	C29—Fe2—C21—C20	85.4 (4)
C9—Fe1—C4—C8	-179.1 (3)	C23—Fe2—C21—C20	-82.8 (4)
C13—Fe1—C4—C8	-138.8 (3)	C24—Fe2—C21—C20	-39.6 (4)
C6—Fe1—C4—C8	80.0 (3)	C27—Fe2—C21—C20	-161.1 (10)
C11—Fe1—C4—C8	-60.2 (6)	C28—Fe2—C21—C20	51.9 (7)
C12—Fe1—C4—C8	-95.5 (4)	C25—Fe2—C21—C22	-111.8 (4)
C7—Fe1—C4—C8	36.5 (3)	C26—Fe2—C21—C22	-71.1 (5)
C5—Fe1—C4—C3	-121.2 (5)	C29—Fe2—C21—C22	-154.6 (4)
C9—Fe1—C4—C3	-58.1 (5)	C20—Fe2—C21—C22	120.0 (5)
C13—Fe1—C4—C3	-17.8(5)	C23—Fe2—C21—C22	37.2 (4)
C6—Fe1—C4—C3	-158.9(5)	C24—Fe2—C21—C22	80.4 (5)
C11—Fe1—C4—C3	60.9 (6)	C27 - Fe2 - C21 - C22	-41.1 (12)
C12—Fe1—C4—C3	25.6 (5)	C_{28} Fe2 C_{21} C_{22}	171.9 (5)
C7—Fe1—C4—C3	157 5 (5)	$C_{20} = C_{21} = C_{22} = C_{23}$	-0.7(7)
C8 = Fe1 = C4 = C3	121.0 (5)	Fe ² —C ² 1—C ² 2—C ² 3	-60.0(5)
C_{8} C_{4} C_{5} C_{6}	-0.8(5)	C_{20} C_{21} C_{22} E_{e^2}	59 3 (4)
C_{3} C_{4} C_{5} C_{6}	1784(4)	$C_{25} = F_{e^2} = C_{22} = C_{23}$	-155.7(4)
$E_{2} = \frac{1}{2} + \frac{1}{2$	600(3)	$C_{23} = C_{22} = C_{23} = C_{23}$	119.0 (6)
C8-C4-C5-Fe1	-60.8(3)	$C_{26} = F_{e^2} = C_{22}^2 = C_{23}^2$	-1123(4)
$C_3 = C_4 = C_5 = F_{el}$	118.4.(5)	$C_{20} = F_{e2} = C_{22} = C_{23}$	112.3(4)
C_{9} E ₂ 1 C ₅ C ₆	105.1(3)	$C_{20} = F_{e2}^{22} = C_{23}^{22}$	81 Q (4)
$C_{2} = 1 + C_{2} = C_{2}$	-1100(4)	$C_{20} - C_{22} - C_{23}$	31.9(4)
C_{4} F_{e1} C_{5} C_{6}	-119.0(4)	$C_{24} = Fe_{2} = C_{22} = C_{23}^{22}$	-724(5)
C10 = Fe1 = C5 = C6	148.0(3)	$C_2/-F_{C_2} = C_{2_2} = C_{2_3}$	-72.4(3)
C10 - Fe1 - C5 - C6	07.2(4)	$C_{20} = Fe_2 = C_{22} = C_{23}$	-43.0(14)
C12 - Fe1 - C5 - C6	-1/9.9(4)	C_{23} — F_{22} — C_{22} — C_{21}	83.4 (4)
C/—FeI—C5—C6	-3/.3(3)	C_{26} Fe2 C_{22} C_{21}	128.8 (4)
C8—FeI—C5—C6	-80.3(3)	C_{29} —Fe2— C_{22} — C_{21}	51.6 (7)
$C_{2} = C_{1} = C_{2} = C_{1}$	-135.9(3)	C_{20} —Fe2— C_{22} — C_{21}	-3/.1(3)
C13 - FeI - C5 - C4	-93.0 (3)	C_{23} —Fe2— C_{22} — C_{21}	-119.0 (6)
C10—Fe1—C5—C4	-173.8(3)	C24—Fe2—C22—C21	-82.0 (4)
C6—Fe1—C5—C4	119.0 (4)	C2/—Fe2—C22—C21	168.6 (4)
C12—Fe1—C5—C4	-60.9 (5)	C28—Fe2—C22—C21	-163.9 (11)
C7—Fe1—C5—C4	81.7 (3)	C21—C22—C23—C24	-0.1 (8)
C8—Fe1—C5—C4	38.7 (3)	Fe2—C22—C23—C24	-59.5 (5)

C4—C5—C6—C7	0.0 (6)	C21—C22—C23—Fe2	59.4 (4)
Fe1—C5—C6—C7	59.6 (4)	C25—Fe2—C23—C22	48.0 (7)
C4—C5—C6—Fe1	-59.7 (3)	C21—Fe2—C23—C22	-38.3 (4)
C9—Fe1—C6—C5	-89.5 (3)	C26—Fe2—C23—C22	84.5 (5)
C4—Fe1—C6—C5	38.1 (3)	C29—Fe2—C23—C22	-157.7 (12)
C13—Fe1—C6—C5	-55.1 (5)	C20—Fe2—C23—C22	-81.9 (4)
C10—Fe1—C6—C5	-133.2 (3)	C24—Fe2—C23—C22	-120.0 (6)
C11—Fe1—C6—C5	-169.9 (3)	C27—Fe2—C23—C22	127.6 (5)
C7—Fe1—C6—C5	119.6 (4)	C28—Fe2—C23—C22	167.4 (5)
C8—Fe1—C6—C5	82.4 (3)	C25—Fe2—C23—C24	168.0 (4)
C5—Fe1—C6—C7	-119.6 (4)	C21—Fe2—C23—C24	81.7 (4)
C9—Fe1—C6—C7	150.9 (3)	C26—Fe2—C23—C24	-155.5 (4)
C4—Fe1—C6—C7	-81.5 (3)	C22—Fe2—C23—C24	120.0 (6)
C13—Fe1—C6—C7	-174.7 (3)	C29—Fe2—C23—C24	-37.7 (15)
C10—Fe1—C6—C7	107.2 (3)	C20—Fe2—C23—C24	38.1 (4)
C11—Fe1—C6—C7	70.5 (4)	C27—Fe2—C23—C24	-112.4 (5)
C8—Fe1—C6—C7	-37.2 (3)	C28—Fe2—C23—C24	-72.6 (6)
C5—C6—C7—C8	0.9 (6)	C22—C23—C24—C20	0.8 (7)
Fe1—C6—C7—C8	59.7 (4)	Fe2—C23—C24—C20	-58.4 (4)
C5-C6-C7-Fe1	-58.9 (3)	C22—C23—C24—Fe2	59.2 (5)
C5—Fe1—C7—C8	-81.8 (3)	C21—C20—C24—C23	-1.3 (6)
C9—Fe1—C7—C8	-169.6 (3)	C19—C20—C24—C23	-178.1 (5)
C4—Fe1—C7—C8	-37.5 (3)	Fe2-C20-C24-C23	59.0 (4)
C10—Fe1—C7—C8	151.4 (3)	C21-C20-C24-Fe2	-60.3 (4)
C6—Fe1—C7—C8	-119.3 (4)	C19—C20—C24—Fe2	122.9 (5)
C11—Fe1—C7—C8	107.9 (4)	C25—Fe2—C24—C23	-151.7 (11)
C12—Fe1—C7—C8	68.7 (5)	C21—Fe2—C24—C23	-81.3 (5)
C5—Fe1—C7—C6	37.5 (3)	C26—Fe2—C24—C23	48.6 (8)
C9—Fe1—C7—C6	-50.2 (5)	C22—Fe2—C24—C23	-36.9 (5)
C4—Fe1—C7—C6	81.8 (3)	C29—Fe2—C24—C23	170.4 (5)
C10—Fe1—C7—C6	-89.2 (3)	C20—Fe2—C24—C23	-119.9 (6)
C11—Fe1—C7—C6	-132.8 (3)	C27—Fe2—C24—C23	85.4 (6)
C12—Fe1—C7—C6	-172.0 (4)	C28—Fe2—C24—C23	128.5 (5)
C8—Fe1—C7—C6	119.3 (4)	C25—Fe2—C24—C20	-31.7 (14)
C6—C7—C8—C4	-1.3 (6)	C21—Fe2—C24—C20	38.6 (4)
Fe1—C7—C8—C4	57.8 (3)	C26—Fe2—C24—C20	168.5 (5)
C6—C7—C8—Fe1	-59.1 (4)	C22—Fe2—C24—C20	83.0 (4)
C5—C4—C8—C7	1.3 (5)	C29—Fe2—C24—C20	-69.7 (5)
C3—C4—C8—C7	-177.9 (4)	C23—Fe2—C24—C20	119.9 (6)
Fe1—C4—C8—C7	-58.7 (4)	C27—Fe2—C24—C20	-154.7 (4)
C5—C4—C8—Fe1	60.0 (3)	C28—Fe2—C24—C20	-111.6 (4)
C3—C4—C8—Fe1	-119.2 (5)	C21—Fe2—C25—C29	-112.4 (4)
C5—Fe1—C8—C7	81.6 (3)	C26—Fe2—C25—C29	118.8 (5)
C4—Fe1—C8—C7	120.3 (5)	C22—Fe2—C25—C29	-155.6 (4)
C13—Fe1—C8—C7	-177.2 (3)	C20—Fe2—C25—C29	-72.3 (4)
C10—Fe1—C8—C7	-51.6 (5)	C23—Fe2—C25—C29	172.0 (6)
C6—Fe1—C8—C7	37.7 (3)	C24—Fe2—C25—C29	-46.2 (13)
C11—Fe1—C8—C7	-91.1 (4)	C27—Fe2—C25—C29	81.4 (4)
C12—Fe1—C8—C7	-135.4 (4)	C28—Fe2—C25—C29	38.3 (4)

C5—Fe1—C8—C4	-38.7 (3)	C21—Fe2—C25—C26	128.8 (4)
C13—Fe1—C8—C4	62.5 (4)	C22—Fe2—C25—C26	85.6 (4)
C10—Fe1—C8—C4	-171.9 (4)	C29—Fe2—C25—C26	-118.8 (5)
C6—Fe1—C8—C4	-82.6 (3)	C20—Fe2—C25—C26	168.8 (4)
C11—Fe1—C8—C4	148.6 (3)	C23—Fe2—C25—C26	53.2 (7)
C12—Fe1—C8—C4	104.3 (4)	C24—Fe2—C25—C26	-165.1 (11)
C7—Fe1—C8—C4	-120.3 (5)	C27—Fe2—C25—C26	-37.4 (5)
C5—Fe1—C9—C13	106.5 (3)	C28—Fe2—C25—C26	-80.5 (5)
C4—Fe1—C9—C13	69.0 (4)	C21—Fe2—C25—C30	9.1 (5)
C10—Fe1—C9—C13	-118.0 (4)	C26—Fe2—C25—C30	-119.6 (6)
C6—Fe1—C9—C13	149.1 (3)	C22—Fe2—C25—C30	-34.1 (5)
C11—Fe1—C9—C13	-81.0 (4)	C29—Fe2—C25—C30	121.5 (6)
C12—Fe1—C9—C13	-37.8 (3)	C20—Fe2—C25—C30	49.2 (5)
C7—Fe1—C9—C13	-178.4 (4)	C23—Fe2—C25—C30	-66.5 (7)
C5—Fe1—C9—C10	-135.4 (3)	C24—Fe2—C25—C30	75.3 (13)
C4—Fe1—C9—C10	-173.0 (3)	C27—Fe2—C25—C30	-157.0 (6)
C13—Fe1—C9—C10	118.0 (4)	C28—Fe2—C25—C30	159.8 (6)
C6—Fe1—C9—C10	-92.8 (4)	C29—C25—C26—C27	-0.1 (6)
C11—Fe1—C9—C10	37.0 (4)	C30—C25—C26—C27	178.1 (5)
C12—Fe1—C9—C10	80.3 (4)	Fe2—C25—C26—C27	59.9 (4)
C7—Fe1—C9—C10	-60.3 (5)	C29—C25—C26—Fe2	-60.0 (4)
C5—Fe1—C9—C14	-14.4 (5)	C30—C25—C26—Fe2	118.2 (5)
C4—Fe1—C9—C14	-52.0 (5)	C25—Fe2—C26—C27	-119.3 (6)
C13—Fe1—C9—C14	-121.0 (5)	C21—Fe2—C26—C27	169.5 (5)
C10—Fe1—C9—C14	121.0 (6)	C22—Fe2—C26—C27	129.0 (5)
C6—Fe1—C9—C14	28.2 (5)	C29—Fe2—C26—C27	-81.5 (5)
C11—Fe1—C9—C14	158.0 (5)	C20—Fe2—C26—C27	-159.1 (10)
C12—Fe1—C9—C14	-158.7 (5)	C23—Fe2—C26—C27	87.0 (6)
C7—Fe1—C9—C14	60.6 (6)	C24—Fe2—C26—C27	54.2 (8)
C13—C9—C10—C11	0.5 (6)	C28—Fe2—C26—C27	-37.3 (5)
C14—C9—C10—C11	-175.5 (5)	C21—Fe2—C26—C25	-71.2 (5)
Fe1-C9-C10-C11	-59.6 (4)	C22—Fe2—C26—C25	-111.7 (4)
C13-C9-C10-Fe1	60.1 (3)	C29—Fe2—C26—C25	37.8 (3)
C14-C9-C10-Fe1	-115.8 (5)	C20—Fe2—C26—C25	-39.8 (12)
C5—Fe1—C10—C11	-176.8 (4)	C23—Fe2—C26—C25	-153.6 (4)
C9—Fe1—C10—C11	119.4 (5)	C24—Fe2—C26—C25	173.5 (5)
C13—Fe1—C10—C11	81.0 (4)	C27—Fe2—C26—C25	119.3 (6)
C6—Fe1—C10—C11	-137.7 (4)	C28—Fe2—C26—C25	82.1 (4)
C12—Fe1—C10—C11	37.2 (4)	C25—C26—C27—C28	0.4 (7)
C7—Fe1—C10—C11	-94.7 (4)	Fe2—C26—C27—C28	59.5 (4)
C8—Fe1—C10—C11	-61.1 (6)	C25—C26—C27—Fe2	-59.0 (4)
C5—Fe1—C10—C9	63.8 (4)	C25—Fe2—C27—C28	-81.3 (4)
C13—Fe1—C10—C9	-38.4 (3)	C21—Fe2—C27—C28	-156.7 (10)
C6—Fe1—C10—C9	102.9 (3)	C26—Fe2—C27—C28	-119.3 (6)
C11—Fe1—C10—C9	-119.4 (5)	C22—Fe2—C27—C28	170.2 (4)
C12—Fe1—C10—C9	-82.2 (4)	C29—Fe2—C27—C28	-37.5 (4)
C7—Fe1—C10—C9	145.8 (3)	C20—Fe2—C27—C28	50.1 (7)
C8—Fe1—C10—C9	179.4 (4)	C23—Fe2—C27—C28	130.0 (5)
C9—C10—C11—C12	-0.5 (6)	C24—Fe2—C27—C28	87.5 (5)

Fe1—C10—C11—C12	-59.5 (4)	C25—Fe2—C27—C26	38.0 (4)
C9-C10-C11-Fe1	59.0 (4)	C21—Fe2—C27—C26	-37.3 (13)
C9—Fe1—C11—C10	-38.0 (4)	C22—Fe2—C27—C26	-70.5 (5)
C4—Fe1—C11—C10	-173.2 (4)	C29—Fe2—C27—C26	81.8 (4)
C13—Fe1—C11—C10	-82.3 (4)	C20—Fe2—C27—C26	169.4 (4)
C6—Fe1—C11—C10	62.2 (5)	C23—Fe2—C27—C26	-110.7 (5)
C12—Fe1—C11—C10	-119.7 (6)	C24—Fe2—C27—C26	-153.1 (4)
C7—Fe1—C11—C10	103.2 (4)	C28—Fe2—C27—C26	119.3 (6)
C8—Fe1—C11—C10	146.8 (4)	C26—C27—C28—C29	-0.6(7)
C9—Fe1—C11—C12	81.6 (4)	Fe2—C27—C28—C29	58.3 (4)
C4—Fe1—C11—C12	-53.5 (6)	C26—C27—C28—Fe2	-58.9 (4)
C13—Fe1—C11—C12	37.4 (4)	C25—Fe2—C28—C27	82.2 (4)
C10—Fe1—C11—C12	119.7 (6)	C21—Fe2—C28—C27	168.5 (5)
C6—Fe1—C11—C12	-178.2 (4)	C26—Fe2—C28—C27	37.7 (4)
C7—Fe1—C11—C12	-137.1 (4)	C22—Fe2—C28—C27	-34.4 (13)
C8—Fe1—C11—C12	-93.6 (4)	C29—Fe2—C28—C27	120.2 (5)
C10-C11-C12-C13	0.4 (7)	C20—Fe2—C28—C27	-155.8 (4)
Fe1-C11-C12-C13	-59.0 (4)	C23—Fe2—C28—C27	-70.3 (5)
C10-C11-C12-Fe1	59.3 (4)	C24—Fe2—C28—C27	-111.0 (4)
C5—Fe1—C12—C11	-168.7 (4)	C25—Fe2—C28—C29	-38.0 (3)
C9—Fe1—C12—C11	-81.7 (4)	C21—Fe2—C28—C29	48.3 (7)
C4—Fe1—C12—C11	151.5 (3)	C26—Fe2—C28—C29	-82.5 (4)
C13—Fe1—C12—C11	-119.8 (5)	C22—Fe2—C28—C29	-154.5 (11)
C10—Fe1—C12—C11	-37.2 (4)	C20—Fe2—C28—C29	84.0 (4)
C7—Fe1—C12—C11	65.9 (5)	C23—Fe2—C28—C29	169.5 (4)
C8—Fe1—C12—C11	106.3 (4)	C24—Fe2—C28—C29	128.8 (4)
C5—Fe1—C12—C13	-48.8 (5)	C27—Fe2—C28—C29	-120.2 (5)
C9—Fe1—C12—C13	38.1 (3)	C26—C25—C29—C28	-0.2 (6)
C4—Fe1—C12—C13	-88.7 (4)	C30—C25—C29—C28	-178.4 (5)
C10—Fe1—C12—C13	82.6 (4)	Fe2—C25—C29—C28	-60.0 (4)
C11—Fe1—C12—C13	119.8 (5)	C26—C25—C29—Fe2	59.8 (3)
C7—Fe1—C12—C13	-174.3 (3)	C30—C25—C29—Fe2	-118.4 (5)
C8—Fe1—C12—C13	-133.9 (3)	C27—C28—C29—C25	0.5 (7)
C11—C12—C13—C9	-0.1 (6)	Fe2—C28—C29—C25	59.4 (4)
Fe1—C12—C13—C9	-59.3 (3)	C27—C28—C29—Fe2	-58.9 (5)
C11—C12—C13—Fe1	59.2 (4)	C21—Fe2—C29—C25	84.7 (4)
C10—C9—C13—C12	-0.2 (5)	C26—Fe2—C29—C25	-38.2 (3)
C14—C9—C13—C12	175.7 (5)	C22—Fe2—C29—C25	49.3 (7)
Fe1—C9—C13—C12	59.8 (4)	C20—Fe2—C29—C25	127.5 (3)
C10-C9-C13-Fe1	-60.0 (3)	C23—Fe2—C29—C25	-160.9 (12)
C14—C9—C13—Fe1	115.9 (5)	C24—Fe2—C29—C25	168.3 (3)
C5—Fe1—C13—C12	152.7 (4)	C27—Fe2—C29—C25	-81.8 (4)
C9—Fe1—C13—C12	-118.8 (5)	C28—Fe2—C29—C25	-118.5 (6)
C4—Fe1—C13—C12	108.8 (4)	C25—Fe2—C29—C28	118.5 (6)
C10—Fe1—C13—C12	-80.2 (4)	C21—Fe2—C29—C28	-156.8 (4)
C6—Fe1—C13—C12	-171.9 (4)	C26—Fe2—C29—C28	80.3 (5)
C11—Fe1—C13—C12	-37.0 (4)	C22—Fe2—C29—C28	167.8 (6)
C8—Fe1—C13—C12	70.8 (5)	C20—Fe2—C29—C28	-114.0 (4)
C5—Fe1—C13—C9	-88.5 (3)	C23—Fe2—C29—C28	-42.4 (14)

C4—Fe1—C13—C9	-132.4 (3)	C24—Fe2—C29—C28	-73.2 (5)
C10—Fe1—C13—C9	38.6 (3)	C27—Fe2—C29—C28	36.7 (4)
C6—Fe1—C13—C9	-53.1 (5)	C31—N10—C30—C25	129.5 (6)
C11—Fe1—C13—C9	81.8 (3)	N11—N10—C30—C25	-56.3 (7)
C12—Fe1—C13—C9	118.8 (5)	C29—C25—C30—N10	-87.9 (6)
C8—Fe1—C13—C9	-170.4 (3)	C26—C25—C30—N10	94.2 (6)
C15—N4—C14—C9	-108.1 (6)	Fe2—C25—C30—N10	-177.6 (3)
N5—N4—C14—C9	73.5 (6)	C32—N12—C31—N10	-1.0 (6)
C13—C9—C14—N4	91.0 (6)	Co1 ^{iv} —N12—C31—N10	177.3 (3)
C10-C9-C14-N4	-93.9 (6)	N11—N10—C31—N12	0.8 (6)
Fe1—C9—C14—N4	178.6 (3)	C30—N10—C31—N12	175.6 (5)
N5—N4—C15—N6	0.0 (6)	N10—N11—C32—N12	-0.3 (6)
C14—N4—C15—N6	-178.5 (4)	C31—N12—C32—N11	0.8 (6)
C16—N6—C15—N4	-0.8 (6)	Co1 ^{iv} —N12—C32—N11	-177.5 (4)
Co1 ⁱⁱⁱ —N6—C15—N4	176.7 (3)	Co1-01-C33-C34	158.2 (4)
N4—N5—C16—N6	-1.4 (7)		

Symmetry codes: (i) -x+3/2, y+1/2, -z+1/2; (ii) -x+3/2, y+1/2, -z+3/2; (iii) -x+3/2, y-1/2, -z+1/2; (iv) -x+3/2, y-1/2, -z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1—H1D···O2	0.93	1.74	2.665 (6)	174
O2—H2D···Cl2 ⁱⁱ	0.82	2.87	3.620 (6)	153
O3—H3D…O8	0.85	2.08	2.906 (12)	162
O3—H3D…Cl1	0.85	2.90	3.687 (8)	153
O4—H4D…N5 ^v	0.84	2.05	2.871 (8)	164
O13—H1W…O3	0.85	1.92	2.677 (7)	148
O13—H2W…O4	0.90	2.06	2.622 (7)	119

Symmetry codes: (ii) -x+3/2, y+1/2, -z+3/2; (v) x-1/2, -y+1/2, z+1/2.

Fig. 2

